MISSION CRITICAL
• Improves customer experience by providing simple access to resources.
• Reduces costs by saving hours of labor.
• Builds capacity by removing a work hazard.
• Embraces innovation by reducing paper usage and decreasing waste.

PROBLEM STATEMENT
• Customer survey results showed that there was some dissatisfaction with a process. World-class companies set the expectations that we hope to achieve.

ACTIONS TAKEN
• Investigated what other companies do to achieve this.
• Discussed how we might be able to meet these benchmarks.
• Created a business use case and got funding.
• Met and selected a vendor that supplies solution.

PROJECT GOALS
• PROJECT GOAL ONE
• PROJECT GOAL TWO
• PROJECT GOAL THREE

RESULTS
• 20% reduction in rework
• 50% savings, resulting in $25,000 a year in estimated labor (deferred)
• Carbon footprint reduction
• Happy employees.

CONTACTS
GROUP OR TEAM NAME
Person One
EmailAddress@uw.edu
Person Two
EmailAddress@uw.edu
Person Three
EmailAddress@uw.edu
Person Four
EmailAddress@uw.edu

FUTURE
DEVELOPMENT
• Flying cars
• Virtual reality
• Pet dinosaurs
• Half-Life 3
• Teleportation
THE FOLLOWING SLIDES ARE EXAMPLES

PROJECT GOALS

- PROVIDE INSTANT ACCESS TO LEAN METRICS
- REDUCE TIME TO TAKE ACTION AND DISCOVER OUTLIERS
USING DATA VISUALIZATION TO TRACK LEAN ACTIVITY
MANAGING BY FACT AND STRATEGY WITH TABLEAU

WHY LEAN IDEAS MATTER

- Finance & Facilities (F2) made a commitment in 2010 to using Lean to improve the way it delivers services to its campus customers
- Lean idea implementation is an indicator of team activity
- Team activity is linked to employee engagement, productivity, and cost savings

PROBLEM STATEMENT

- Previously data on idea generation and implementation was reported annually limiting access to timely results
- Shorten the time from team reporting their data to receiving results so that we can make it easier to take action to improve

ACTIONS TAKEN

- Converted survey tool to Drupal with an online database (wePort)
- Made reporting the # of participants in a huddle mandatory
- Categorized the teams by the financial org structure to make it easier to join this data with other data including FTE and budget
- Joined together two data sources – historical data and current data
- Formatted the data for use in Tableau dashboard

RESULTS

- Tableau dashboard which has monthly results to the team level and is updated immediately after results received
- Positive feedback from our test users
- Test users began customizing data for their needs almost immediately
- Growing interest in custom analytics as user base grows (below)

FUTURE DEVELOPMENT

- Gain user acceptance of dynamic tools to view data rather than static paper based reports
- Publish public dashboard
- Connect Tableau directly to survey data source
- Include more Lean participation information
- Link to other UW databases for enhanced analytics

STEP 1: GENERATION

STEP 2: COLLECTION

STEP 3: ANALYSIS

PROJECT GOALS

- PROVIDE INSTANT ACCESS TO LEAN METRICS
- REDUCE TIME TO TAKE ACTION AND DISCOVER OUTLIERS

CONTACTS

FINANCE & FACILITIES – METRICS & REPORTING GROUP
- Forski Hunger
- Fengen@uw.edu
- Kevin Kramer
- kramer@uwex.edu
- Mark McKinnel
- mjinn@uw.edu
- Jason Hahn
- jphahn@uw.edu

BE BOUNDLESS
PROJECT GOALS
- Reduce Redundancy
- Spend less time managing idea board
- Increase idea count through minimized transaction cost

WHY VISIBILITY MATTERS
- Redundancy is the result of poor visibility – team members are not aware of what their counterparts are working on, with, or towards.
- Cross pollination is powerful: Tools traditionally used for one job might be powerful in another area also.

SOLUTION: DIGITAL IDEA BOARD

BEFORE
- Significant wasted time on duplicate efforts.
- 2+ hours per month capturing idea counts & other Lean engagement metrics.
- Approx. 25% of huddle time was spent managing visual board (struggling to read handwriting, moving and re-taping idea cards, etc).

AFTER
- Reduce Redundancy
- Spend less time managing idea board
- Increase idea count through minimized transaction cost

RESULTS
- Approx. 10 mins spent per month capturing Lean Metrics – a 90% reduction in time spent!
- Less than 10% of huddle time now spent managing & manipulating visual board.
- Zero duplicated ideas or efforts.

FUTURE DEVELOPMENT
- Leverage connected apps to improve workflow and collaboration on ideas.
- Drive improved use of time tracking features by users – enabling us to understand & improve our work.
- Revisit archived ideas & review with fresh eyes.

FACILITIES EMPLOYEE SERVICES TEAM

FS ADMINISTRATION BUILDING
- Patti Colaizzo
- Donna Schmidt
- Clayton Brainard
- Katie Savole
- Tracey Mosier
- Anne Marie Marshall
- Reggie Taschereau

FS TRAINING CENTER
- Chris Pennington
- Mary Dunlap
- Valentina Sunga
- Lohoa Do
- Page Russell
- Mary Jo Blahna
- Mary Mahon
- Barb Brown

GOOD IDEAS BECOME GREAT IDEAS
- Team shares, discusses, and collaborates on ideas more frequently.
- Good ideas become great ideas because the varied skillsets of the team are applied.
- Barriers to posting and working on ideas are reduced.
EQUIPMENT INVENTORY LEAN

Problem: In the past equipment custodians relied on vague descriptions to locate their assets.
Solution: Create a web based GIS map that locates all UW-FS equipment. The map would also provide pictures and descriptions of the equipment.
Result: Baselined UW-FS equipment database and reduced time spent inventorying equipment.

WATER TREATMENT ASSESSMENT

Problem: UW-FS Shop 35 (Refrigeration) historically recorded test data on paper notebooks that were scattered across campus.
Solution: Develop digital forms using GIS and Microsoft SharePoint to allow shop personnel to enter and view test data in real time.
Result: Time spent locating data reduced from several hours to a few minutes. Provided new technology skills to shop 35 staff.

FIRST CAMPUS ENGINEERING INITIATIVE (2012)

PAST PROCEDURES

Confusing, frustrating and time consuming
Manual paper based data entry
Numerous Excel and Record Drawings Required to Answer Questions

LiDAR TUNNEL INVENTORY

Problem: Engineers relied on 2D drawings and site visits to manage the tunnel system.
Solution: Use GIS and LiDAR technologies to inventory all eight miles of utility tunnels.
Result: Most site visits were replaced with conference calls with the aid of LiDAR, resulting in significant time and labor savings.

STRUCTURAL INFORMATION MAP

Problem: Structural building information was historically stored in numerous locations and databases which took extensive time to gather.
Solution: Create a web based GIS map that stores common necessary structural information for each UW Seattle building.
Result: Reduction in time spent locating structural information through data visualization.

Cesar Escobar – cesare@uw.edu; Jay Dahlstrom – jamesd26@uw.edu; Kelly Kobashigawa – kel10k@uw.edu; Marilyn Fick – mgfick@uw.edu